Skip to main content
Search result for "Solr search content"
Search Result for "*:*"
Clinical Trial

ARST1321, Pazopanib Neoadjuvant Trial in Non-Rhabdomyosarcoma Soft Tissue Sarcomas (PAZNTIS): A Phase II/III Randomized Trial of Preoperative Chemoradiation or Preoperative Radiation Plus or Minus Pazopanib (NSC# 737754, IND# 118613

This randomized phase II/III trial studies how well pazopanib, when combined with chemotherapy and radiation therapy or radiation therapy alone, work in the treatment of patients with newly diagnosed non-rhabdomyosarcoma soft tissue sarcomas that can eventually be removed by surgery. Radiation therapy uses high energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as ifosfamide and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Pazopanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether these therapies can be safely combined and if they work better when given together in treating patients with non-rhabdomyosarcoma soft tissue sarcomas.

Clinical Trial

ACNS0831, Phase III Randomized Trial of Post-Radiation Chemotherapy in Patients with Newly Diagnosed Ependymoma Ages 1 to 21 years

This partially randomized phase III trial is studying maintenance chemotherapy to see how well it works compared to observation following induction chemotherapy and radiation therapy in treating young patients with newly diagnosed ependymoma. Drugs used in chemotherapy, such as vincristine sulfate, carboplatin, cyclophosphamide, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Giving chemotherapy with radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started.

Clinical Trial

AALL1131, A Phase III Randomized Trial for Newly Diagnosed High Risk B-Lymphoblastic Leukemia (B-ALL) Including a Stratum Evaluating Dasatinib (IND#73789, NSC#732517) in Patients with Ph-like Tyrosine Kinase Inhibitor (TKI) Sensitive Mutations

This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.

Clinical Trial

AALL0932, Treatment of Patients with Newly Diagnosed Standard Risk B-Precursor Acute Lymphoblastic Leukemia (ALL)

This partially randomized phase III trial studies the side effects of different combinations of risk-adapted chemotherapy regimens and how well they work in treating younger patients with newly diagnosed standard-risk acute lymphoblastic leukemia or B-lineage lymphoblastic lymphoma that is found only in the tissue or organ where it began (localized). Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy), giving the drugs in different doses, and giving the drugs in different combinations may kill more cancer cells.

Clinical Trial

COG AREN0532: Treatment for Very Low, Low and Standard Risk Favorable Histology Wilms Tumor. A Groupwide Phase III Study

This phase III trial is studying vincristine, dactinomycin, and doxorubicin with or without radiation therapy or observation only to see how well they work in treating patients undergoing surgery for newly diagnosed stage I, stage II, or stage III Wilms' tumor. Drugs used in chemotherapy, such as vincristine, dactinomycin, and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving these treatments after surgery may kill any tumor cells that remain after surgery. Sometimes, after surgery, the tumor may not need additional treatment until it progresses. In this case, observation may be sufficient.

Clinical Trial

AALL0434 Intensified Methotrexate, Nelarabine (Compound 506U78; IND#52611) and Augmented BFM Therapy for Children and Young Adults with Newly Diagnosed T-cell Acute Lymphoblastic Leukemia (ALL) or T-cell Lymphoblastic Lymphoma

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.

Clinical Trial

AREN0533. Treatment of Newly Diagnosed Higher Risk Favorable Histology Wilms Tumors. A Groupwide Phase III Study

This phase III trial is studying how well combination chemotherapy with or without radiation therapy works in treating young patients with newly diagnosed stage III or stage IV Favorable Histology Wilms' tumor. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving more than one drug (combination chemotherapy) with or without radiation therapy may kill more tumor cells.

Clinical Trial

ACCRN07, Protocol for the Enrollment on the Official COG Registry, The Childhood Cancer Research Network (CCRN)

Background: - The Children s Oncology Group has established a research network, the Childhood Cancer Research Network (CCRN), to collect information about children with cancer and other conditions that are benign but involve abnormal cell growth in order to help doctors and scientists better understand childhood cancer. The CCRN's goal is to collect clinical information about every child diagnosed with cancer and similar conditions in the United States and Canada, to allow researchers to study patterns, characteristics, and causes of childhood cancer. The information can also help researchers study the causes of childhood cancer. To expand the CCRN, parents of children who have been diagnosed with cancer will be asked to provide information about themselves and their child for research purposes. Objectives: To obtain informed consent from parents (and the child, when appropriate) of infants, children, adolescents, and young adults newly diagnosed with cancer to enter their names and certain information concerning their child into the Childhood Cancer Research Network. To obtain informed consent from parents (and the child, when appropriate) of infants, children, adolescents, and young adults newly diagnosed with cancer for permission to be contacted in the future to consider participating in non-therapeutic and prevention research studies involving the parents and/or the child. Eligibility: - Parents of children who have been seen at or treated by a hospital that is a member of the Children s Oncology Group. Design: Parents will provide permission to have personal information sent from their child s hospital to the CCRN, including the child and parents' names; child's gender, birth date, race, and ethnicity; information about the disease; and the treating institution. Parents will also give permission for CCRN to contact the diagnostic laboratory to obtain specific information about the tumor or cancer cells. Parents will be asked if they are willing to be contacted in the future to consider participating in CCRN research studies, and will provide contact information (name, home address, and telephone number) to be entered in the CCRN. Parents or patients who change their minds about having information available in the CCRN can ask the treatment institution to restrict access to the identifying information. Parents or patients who refuse to have information included in the CCRN or be contacted in the future will still be able to enter clinical cancer research studies.

Clinical Trial

ACNS0333: Treatment of Atypical Teratoid/Rhabdoid Tumors (AT/RT) of the Central Nervous System with Surgery, Intensive Chemotherapy, and 3-D Conformal Radiation.

This phase III trial studies the side effects of combination chemotherapy, 3-dimensional conformal radiation therapy, and an autologous peripheral blood stem cell transplant, and to see how well they work in treating young patients with atypical teratoid/rhabdoid tumor of the central nervous system. Giving high-dose chemotherapy before an autologous peripheral blood stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy or radiation therapy.